We power the world with innovative gas turbines

Siemens Energy gas turbine portfolio
Gas turbines from 2 to 593 MW

The Siemens Energy gas turbine range has been designed and tailored to help meet our customers’ challenges in a dynamic market environment. Our models range from 2 to 593 MW, fulfilling the requirements of a wide spectrum of applications in terms of efficiency, reliability, flexibility, and environmental compatibility. The products offer low lifecycle costs and an excellent return on investment.

Introduction
- Heavy-duty gas turbines
- Industrial gas turbines
- Aeroderivative gas turbines
- Applications
Siemens Energy gas turbines overview

For more information, please click on a product name

General note:
All simple cycle and mechanical drive performance data in this document are gross values at ISO ambient conditions.
All combined cycle performance data in this document are gross values at ISO ambient conditions.
Siemens Energy HL-class gas turbines are paving the way to the next level of efficiency and performance. The evolutionary development step, derived from proven H-class technology, combines a series of new but already tested technologies like super-efficient internal cooling features for blades and vanes and an advanced combustion system to increase firing temperature.

The result: A technology carrier to the next level with a combined cycle efficiency beyond 64%.

The HL-class consists of two engines: SGT5-9000HL and SGT6-9000HL.

• Derived from proven Siemens Energy H-class technology
• Pushing efficiency and performance to the next level
• Competitive service model with 33,000 Equivalent Base Hours (EBH) / 1,250 Equivalent Starts (ES)

With a combined cycle efficiency of more than 64%, the HL-class gas turbines are paving the way to the next level.
The SGT5-8000H offers outstanding performance and high flexibility. With a gross power output of 450 MW, and a quick ramp-up from start to full load, the turbine offers low lifecycle costs and helps to meet fluctuating power demands.

The turbine is the core component of highly efficient gas-fired power plants, designed for 675 MW with an efficiency higher than 62% in combined cycle operation.

With more than 1.9 million fired hours, the SGT-8000H series provides mature technology with verified reliability and availability.

- Outstanding performance
- High flexibility, short start-up times
- Proven in commercial operations

The SGT5-8000H achieves an efficiency higher than 62% in combined cycle operations.

SGT5-8000H

Heavy-duty gas turbine

Power generation

- Frequency: 50 Hz
- Gross efficiency: 41.2%
- Exhaust temperature: 630 °C (1,166 °F)

Technical data sheet

Key features
The SGT6-8000H offers outstanding performance and high flexibility. The air-cooled turbine with a gross power output of **310 MW** is designed for simple combined cycle integration and short start-up times.

The turbine is the core component of highly efficient gas-fired power plants, designed for 472 MW with an efficiency higher than 62% in combined cycle operation.

With more than **1.9 million fired hours**, the SGT-8000H series provides mature technology with verified reliability and availability.

- Outstanding performance
- High flexibility, short start-up times
- Proven in commercial operations

SGT6-8000H
Heavy-duty gas turbine

Power generation

- **Frequency**: 60 Hz
- **Gross efficiency**: 40.4%
- **Exhaust temperature**: 645 °C (1,193 °F)

The SGT6-8000H achieves an efficiency higher than 62% in combined cycle operations.
The proven SGT5-4000F gas turbine has a robust design with internal cooling air passages for trusted long-term operation and fast start-up capability. The advanced annular combustion chamber with individually replaceable heat shields allows for easy and fast walk-in maintenance. Hydraulic Clearance Optimization (HCO) reduces clearance losses to increase the gas turbine efficiency and minimize degradation at start-up and shut down.

Today, more than 360 turbines have been sold. The installed fleet has accumulated an impressive fleet experience of over 20.5 million equivalent operating hours, and a fleet reliability of more than 99%.

- Proven design, large fleet experience
- Easy maintenance, high availability
- High operational flexibility

The SGT5-4000F is a well-proven 50 Hz gas turbine with an outstanding reliability and availability.

SGT5-4000F
Heavy-duty gas turbine

Power generation

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Gross efficiency</td>
<td>41.0%</td>
</tr>
<tr>
<td>Exhaust temperature</td>
<td>599 °C (1,110 °F)</td>
</tr>
</tbody>
</table>
The SGT6-5000F gas turbine offers economical power generation with fast start-up for peak, intermediate, or base load duty. It achieves peak values for reliability and continuous operation with highest performance values in its class.

Today, more than 380 turbines have been sold. The installed fleet has accumulated more than 17 million equivalent operating hours, with a fleet reliability of over 99%.

- Highest power output for 60 Hz F-class
- Fast start-up and load changing capabilities
- Low emissions with an NOx emission of ≤9 ppmvd on gas and ≤25 ppmvd on oil

The SGT6-5000F offers world-class reliability and best-in-class emission values.
The SGT5-2000E gas turbine is a proven, robust engine for the 50 Hz market which is used in simple cycle or combined cycle processes with or without combined heat and power. It is suitable for all load ranges, including peak load.

The SGT5-2000E offers outstanding fuel flexibility. It can be fired with low calorific gases or gases containing CO₂, H₂S and N₂, as well as with crude oil and other liquid fuels with high viscosity. It provides low NOx emissions, even in the part-load range.

Today, around 400 turbines have been sold, and additionally, more than 270 units under license. Our installed fleet has accumulated over 21 million equivalent operating hours. The SGT-2000E series fleet’s overall best-in-class reliability exceeds 99.5%.

- Best-in-class reliability
- High operational and fuel flexibility
- Easy maintenance

SGT5-2000E

Heavy-duty gas turbine

Power generation

- Frequency: 50 Hz
- Gross efficiency: 36.5%
- Exhaust temperature: 536 °C (997 °F)

Power output: 187 MW
The SGT6-2000E gas turbine is a proven, robust engine for the 60 Hz market which is used in simple cycle or combined cycle processes with or without combined heat and power supply. It is suitable for all load ranges, including peak load.

The SGT6-2000E offers outstanding fuel flexibility. It can be fired with low calorific gases or gases containing CO₂, H₂S and N₂, as well as with crude oil and other liquid fuels with high viscosity. It provides low NOₓ emissions, even in the part-load range.

Today, more than 100 turbines have been sold, resulting in a fleet experience of over 9 million equivalent operating hours. The SGT-2000E series fleet’s overall best-in-class reliability constantly exceeds 99.5%.

- Best-in-class reliability
- High operational and fuel flexibility
- Easy maintenance

Technical data sheet

<table>
<thead>
<tr>
<th>Key features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power generation: 117 MW</td>
</tr>
</tbody>
</table>

SGT6-2000E

Heavy-duty gas turbine

Power generation

- Frequency: 60 Hz
- Gross efficiency: 35.4%
- Exhaust temperature: 532 °C (990 °F)
The market leading SGT-800 industrial gas turbine offers broad flexibility in fuels, operating conditions, maintenance concepts, package solutions and ratings.

The excellent simple cycle efficiency and steam-raising capability make it outstanding in cogeneration and combined cycle installations. The SGT-800-based power plant, designed for flexible operation, is perfectly suited as grid support.

The SGT-800 combines a simple, robust design, for high reliability and easy maintenance, with high efficiency and low emissions.

With more than 435 units sold and over 10 million operating hours, the SGT-800 is an excellent choice for industrial power generation or oil and gas applications.

- Proven reliability
- Flexible solutions
- Excellent performance

SGT-800
Industrial gas turbine

Power generation
- Frequency: 50/60 Hz
- Gross efficiency: 39.4 – 41.1%
- Exhaust temperature: 560 – 596 °C (1,041 – 1,104 °F)
- Exhaust mass flow: 124.7 – 135.5 kg/s

SCC-800 2x1 combined cycle power plant
- Gross plant output: 145.3 – 182.0 MW(e)
- Gross plant efficiency: 58.3 – 60.6%
With **maximized uptime, top-class performance**, and a **low environmental footprint** offering the customer high lifetime profitability, the **SGT-750** industrial gas turbine is a perfect choice for the oil and gas industry as well as industrial power generation. The modular and flexible engine enables onshore or offshore applications, mechanical drive or heat and power. It combines a robust, reliable design with high efficiency and low emissions.

The SGT-750 offers broad flexibility with **different rating options** due to excellent part load capability. When running on lower load the maintenance intervals will be extended, low emissions can be guaranteed while the efficiency still is kept over 40%.

The SGT-750 has a track record of **successful performance** after years in operation and verified results in various applications. Units are sold for use in both power generation and compressor applications such as pipelines and liquefied natural gas (LNG).

- **Maximized uptime**
- **High efficiency**
- **Low emissions**

SGT-750 Industrial gas turbine

Power generation
- Frequency: 50/60 Hz
- Gross efficiency: 40.3%
- Exhaust temperature: 468 °C (875 °F)
- Exhaust mass flow: 115.4 kg/s

Mechanical drive applications
- Efficiency: 40.4 – 41.6%
- Exhaust temperature: 439 – 468 °C (821 – 875 °F)
- Exhaust mass flow: 107.5 – 115.4 kg/s

SGT-750 combined heat and power plant in Altamira, Mexico

SGT-750 core engine with a free high-speed power turbine
Thanks to its wide fuel range capability and design features, the **SGT-700** is a perfect choice for several onshore applications: Industrial power generation, oil and gas power generation, and mechanical drive applications.

It performs well in **combined cycle plants**, and **combined heat and power plants**.

The SGT-700 gas turbine is an evolution of the proven SGT-600 and is specifically designed for **higher power output**. It offers **easy on-site or off-site maintenance**, and operates with a wide range of gaseous and liquid fuels on **Dry Low Emission (DLE)**.

More than **109 units** have been sold with over **3.5 million operating hours**. The fleet-leading gas turbine has 125,000 operating hours.

- Robust, reliable design
- High fuel flexibility
- Low emissions

SGT-700

Industrial gas turbine

Power generation

- Frequency: 50/60 Hz
- Gross efficiency: 37.2 – 38.0%
- Exhaust temperature: 531 – 533 °C (988 – 991 °F)
- Exhaust mass flow: 95.0 – 98.7 kg/s

Mechanical drive applications

- Efficiency: 38.2 – 39.0%
- Exhaust temperature: 531 – 533 °C (988 – 991 °F)
- Exhaust mass flow: 95.0 – 98.7 kg/s

Three SGT-700 packages for mechanical drive
High reliability and availability in combination with good fuel flexibility and third-generation DLE makes the **SGT-600** a perfect choice for several onshore applications: Industrial power generation, oil and gas power generation, and mechanical drive applications. Within the IPG applications, the turbine performs well in **combined heat and power plants**, and **combined cycle plants**.

The industrial gas turbine combines a robust, reliable design with **high fuel flexibility**, and **low emissions**.

More than **350 units** have been sold with over **11.5 million operating hours**. The fleet-leading gas turbine has 160,000 operating hours.

- Robust, reliable design
- High fuel flexibility
- Low emissions

SGT-600

Industrial gas turbine

Power generation

- Frequency: 50/60 Hz
- Gross efficiency: 33.6%
- Exhaust temperature: 543 °C (1,009 °F)
- Exhaust mass flow: 81.3 kg/s

Mechanical drive applications

- Efficiency: 34.6%
- Exhaust temperature: 543 °C (1,009 °F)
- Exhaust mass flow: 81.3 kg/s

Maintainable, reliable, and robust twin-shaft design for mechanical drive and power generation.
The **SGT-400** is a twin-shaft gas turbine available in different configurations and power ratings to support power generation and mechanical drive applications from 10 – 15 MW. The twin-shaft arrangement allows for commonality of parts in mixed-duty installations.

The gas turbine offers the **highest efficiency** in its power class, incorporating the latest aerodynamic and combustion technologies.

With about 20 years of operating experience, the SGT-400 is proven in both offshore and onshore applications. Over **420 units** have been sold with more than **7 million hours operating experience**. The fleet leader has accumulated more than 120,000 operating hours.

- Latest aerodynamic and combustion technology
- Suitable for all climates, onshore and offshore
- High power-to-weight ratio

The SGT-400 is available as a factory-assembled package

Technique data sheet

SGT-400

Industrial gas turbine

Power generation

- Frequency: 50/60 Hz
- Gross efficiency: 34.8 – 35.6%
- Exhaust temperature: 510 – 555 °C (950 – 1,031 °F)
- Exhaust mass flow: 34.2 – 44.5 kg/s

Mechanical drive applications

- Efficiency: 36.8 – 37.1%
- Exhaust temperature: 510 – 543 °C (910 – 1,009 °F)
- Exhaust mass flow: 34.2 kg/s – 44.5 kg/s

Introduction **Gas turbine overview** **References**
The **SGT-300** industrial gas turbine has a rugged industrial design that enables **high efficiency**, **reliability**, and **excellent emissions performance** in a broad spectrum of applications for both power generation and mechanical drive.

The gas turbine is a **proven** unit for all electrical power generation and cogeneration applications. It operates on a wide range of gaseous and liquid fuels. The compact arrangement, on-site or off-site maintainability, and inherent reliability of the SGT-300 make it an ideal gas turbine for the demanding oil and gas industry.

Over **175 units** have been sold, with more than **7.5 million equivalent operating hours**.

- Low maintenance requirements
- Low emissions
- Single-shaft version for power generation, twin-shaft version for mechanical drive applications

Technical data sheet

SGT-300

Industrial gas turbine

<table>
<thead>
<tr>
<th>Power generation</th>
<th>Mechanical drive applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>Efficiency</td>
</tr>
<tr>
<td>50/60 Hz</td>
<td>35.3 – 36.0%</td>
</tr>
<tr>
<td>Gross efficiency</td>
<td>Exhaust temperature</td>
</tr>
<tr>
<td>30.8%</td>
<td>490 – 504 °C (914 – 939 °F)</td>
</tr>
<tr>
<td>Exhaust temperature</td>
<td>Exhaust mass flow</td>
</tr>
<tr>
<td>543 °C (993 °F)</td>
<td>30.2 kg/s</td>
</tr>
<tr>
<td>Exhaust mass flow</td>
<td>29.5 – 30.4 kg/s</td>
</tr>
</tbody>
</table>

Robust, reliable, maintainable single-shaft version for power generation applications.

The SGT-300 twin-shaft version is used for mechanical drive.
The SGT-100 industrial gas turbine is a proven unit for all electrical power generation and mechanical drive applications. The compact arrangement, on-site or off-site maintainability, and inherent reliability makes it an ideal gas turbine for the demanding oil and gas industry.

The gas turbine has a rugged industrial design that enables high efficiency and excellent emissions performance on a wide range of gaseous and liquid fuels.

More than 420 units have been sold with more than 29.5 million operating hours. The lead package has over 180,000 equivalent hours of operation.

- Robust and reliable product
- Wide range of gaseous and liquid fuels
- Single-shaft version for power generation or twin-shaft version for mechanical drive applications

SGT-100
Industrial gas turbine

Power generation
- Frequency: 50/60 Hz
- Gross efficiency: 30.1 – 30.2%
- Exhaust temperature: 544 – 549 °C (1,011 – 1,020 °F)
- Exhaust mass flow: 19.5 – 21.0 kg/s

Mechanical drive applications
- Efficiency: 33.5%
- Exhaust temperature: 544 °C (1,011 °F)
- Exhaust mass flow: 19.5 kg/s
The Siemens Energy SGT-50 gas turbines is an industrial gas turbine with a power output range of 2MW. The turbine combines minimal maintenance in a compact footprint that make it ideal for continuous power generation onshore and offshore, emergency and standby power and combined heat and power (CHP) plants.

Because of its simple, low maintenance design, high reliability and operational experience, the SGT-50 turbine generator packages are the preferred solution for 2MW power requirements.

The wide fuel range enables operation on extremely low heating value fuels, landfill gas, associated gas from crude oil production, and liquid fuels including some crude oils. They are also available in an externally fired configuration for those customers with off-combustor technologies.

Over 1,000 units have been sold with more than 25 million hours operating experience. The fleet leader has accumulated more than 250,000 operating hours.

- Robust and reliable
- Low emissions
- Suitable for all climates – onshore and offshore
- Available in a mobile configuration

SGT-50

Industrial gas turbine

<table>
<thead>
<tr>
<th>Power generation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Gross efficiency</td>
<td>26%</td>
</tr>
<tr>
<td>Exhaust Temperature</td>
<td>600 °C (1,112 °F)</td>
</tr>
<tr>
<td>Exhaust mass flow</td>
<td>9.5 kg/s (20.9 lb/s)</td>
</tr>
</tbody>
</table>
With class-leading reliability and availability, the SGT-A35 is a proven, dependable choice in power generation and mechanical drive applications. It is qualified to meet the stringent standards of the oil and gas industry in both onshore and offshore service.

The aeroderivative gas generator is highly tolerant of transient excursions and challenging mission cycles, and can be easily exchanged at site, reducing maintenance downtime and cost. Both conventional and DLE combustion systems are available, including dual fuel capability.

Evolved through decades of technological advancements, the SGT-A35 has accumulated over 46 million operating hours, with over 850 units sold.

- Proven track record in the oil and gas industry
- Several variants to meet different power needs
- Lightweight, compact, modular package design to maximize power density

The SGT-A35 is a two-spool gas generator aerodynamically coupled to a free power turbine.

Two SGT-A35 offshore generating sets installed on a Floating Production, Storage and Offloading (FPSO) vessel.

SGT-A35
Aeroderivative gas turbine

Power generation
- Frequency: 50/60 Hz
- Gross efficiency: Up to 39.9%
- Exhaust temperature: 485 – 504 °C (905 – 939 °F)
- Exhaust mass flow: 97.7 – 111.0 kg/s

Power generation: 31.3 – 37.4 MW(e)
Mechanical drive: 32.2 – 38.1 MW

Mechanical drive applications
- Efficiency: Up to 41.6%
- Exhaust mass flow: 97.7 – 109.7 kg/s

Introduction Gas turbine overview References
Based on proven aeroderivative design, the SGT-A05 gas turbines are flexible, compact and lightweight designs that are ideally suited for decentralized power generation offering high efficiency and fast start-up capabilities.

The gas turbine engine is designed to operate on a wide variety of fuels. The fuel system operations include dual fuel, steam, and water injection. DLE technology is also available.

More than 1,720 SGT-A05 gas turbines have been sold for industrial use to more than 500 customers in 55 countries, accumulating an impressive 133 million operating hours since its introduction in 1963.

- More than 1,720 gas turbines supplied
- Full engine power within 60 seconds
- High electrical and cycle efficiency

SGT-A05

Aeroderivative gas turbine

Power generation

- Frequency: 50/60 Hz
- Gross efficiency: 29.7 – 33.1%
- Exhaust temperature: 495 – 560 °C (923 – 1,040 °F)
- Exhaust mass flow: 15.4 – 21.4 kg/s

The SGT-A05 has black start and hot start capability. Full power is available within 60 seconds.
Siemens Energy gas turbines are ready for the Hydrogen Economy

In a future decarbonized world, gas turbines and combined cycles running on sustainable hydrogen will complement renewable energy with dispatchable, carbon-free backup power supply to provide electrical energy during periods of “dark doldrums” (lack of sun or wind power).

Already today, most of our turbine models can burn a fuel mixture of natural gas and 30-75% (vol.) of hydrogen, and extensive R&D programs are in place targeting 100% capability between 2023 and 2030. H₂ readiness configurations are available to optimize front end installation costs while minimizing costs and disruption of a later retrofit to hydrogen combustion.

Using hydrogen as fuel, gas turbines and combined cycles will become the prime provider of flexible and dispatchable residual load in a fully decarbonized power scenario while eliminating the risk of stranded assets.
Siemens gas turbines are operating in more than 100 countries. We provide proven technology with over 7,000 installed heavy-duty, industrial and aeroderivative gas turbines.

Siemens Energy gas turbines are operating in more than 100 countries. We provide proven technology with over 7,000 installed heavy-duty, industrial and aeroderivative gas turbines.
Siemens gas turbines are operating in more than 60 countries. We provide proven technology with over 7,000 installed heavy-duty, industrial and aeroderivative gas turbines.

Siemens Energy gas turbines are operating in more than 100 countries. We provide proven technology with over 7,000 installed heavy-duty, industrial and aeroderivative gas turbines.
Performance data overview: Power generation

<table>
<thead>
<tr>
<th>Model</th>
<th>Power output (MW)</th>
<th>Frequency (Hz)</th>
<th>Gross efficiency (%)</th>
<th>Heat rate (kJ/kWh)</th>
<th>Turbine speed (rpm)</th>
<th>Pressure ratio</th>
<th>Exhaust mass flow (kg/s)</th>
<th>Exhaust temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGT-90000HL</td>
<td>593</td>
<td>50</td>
<td>>43.0</td>
<td>~8,375</td>
<td>3,000</td>
<td>24.0</td>
<td>1.050</td>
<td>670</td>
</tr>
<tr>
<td>SGT-90000HL</td>
<td>440</td>
<td>60</td>
<td>>43.2</td>
<td>~8,333</td>
<td>3,600</td>
<td>24.0</td>
<td>0.725</td>
<td>670</td>
</tr>
<tr>
<td>SGT-85000H</td>
<td>450</td>
<td>50</td>
<td>>41.2</td>
<td>~8,780</td>
<td>3,000</td>
<td>21.0</td>
<td>0.935</td>
<td>630</td>
</tr>
<tr>
<td>SGT-85000H</td>
<td>310</td>
<td>60</td>
<td>>40.4</td>
<td>~8,920</td>
<td>3,600</td>
<td>21.0</td>
<td>0.650</td>
<td>645</td>
</tr>
<tr>
<td>SGT-40000F</td>
<td>329</td>
<td>50</td>
<td>41.0</td>
<td>~8,780</td>
<td>3,000</td>
<td>20.1</td>
<td>0.724</td>
<td>599</td>
</tr>
<tr>
<td>SGT-50000F (260 MW)</td>
<td>260</td>
<td>60</td>
<td>40.0</td>
<td>~9,000</td>
<td>3,600</td>
<td>19.5</td>
<td>0.586</td>
<td>592</td>
</tr>
<tr>
<td>SGT-60000F (215 MW)</td>
<td>215</td>
<td>60</td>
<td>39.5</td>
<td>~9,110</td>
<td>3,600</td>
<td>17.0</td>
<td>0.478</td>
<td>612</td>
</tr>
<tr>
<td>SGT-2000E</td>
<td>187</td>
<td>50</td>
<td>36.5</td>
<td>~9,863</td>
<td>3,000</td>
<td>12.8</td>
<td>0.558</td>
<td>536</td>
</tr>
<tr>
<td>SGT-2000E</td>
<td>117</td>
<td>60</td>
<td>35.4</td>
<td>~10,169</td>
<td>3,600</td>
<td>12.0</td>
<td>0.368</td>
<td>532</td>
</tr>
<tr>
<td>SGT-800 (62 MW)</td>
<td>62.5</td>
<td>50/60</td>
<td>41.1</td>
<td>~8,759</td>
<td>6,600</td>
<td>21.1</td>
<td>1.355</td>
<td>596</td>
</tr>
<tr>
<td>SGT-800 (57 MW)</td>
<td>57.0</td>
<td>50/60</td>
<td>40.1</td>
<td>~8,970</td>
<td>6,600</td>
<td>22.0</td>
<td>1.366</td>
<td>565</td>
</tr>
<tr>
<td>SGT-800 (56 MW)</td>
<td>55.6</td>
<td>50/60</td>
<td>39.5</td>
<td>~9,123</td>
<td>6,600</td>
<td>22.0</td>
<td>1.377</td>
<td>564</td>
</tr>
<tr>
<td>SGT-800 (54 MW)</td>
<td>54.0</td>
<td>50/60</td>
<td>39.1</td>
<td>~9,206</td>
<td>6,600</td>
<td>21.6</td>
<td>1.355</td>
<td>563</td>
</tr>
<tr>
<td>SGT-800 (50 MW)</td>
<td>49.9</td>
<td>50/60</td>
<td>39.4</td>
<td>~9,147</td>
<td>6,600</td>
<td>19.8</td>
<td>1.247</td>
<td>560</td>
</tr>
<tr>
<td>SGT-750</td>
<td>39.8</td>
<td>50/60</td>
<td>40.3</td>
<td>~8,922</td>
<td>6,100</td>
<td>24.3</td>
<td>1.154</td>
<td>468</td>
</tr>
<tr>
<td>SGT-700 (35 MW)</td>
<td>35.2</td>
<td>50/60</td>
<td>38.0</td>
<td>~9,466</td>
<td>6,500</td>
<td>18.7</td>
<td>0.987</td>
<td>531</td>
</tr>
<tr>
<td>SGT-700 (33 MW)</td>
<td>32.8</td>
<td>50/60</td>
<td>37.2</td>
<td>~9,675</td>
<td>6,500</td>
<td>18.7</td>
<td>0.950</td>
<td>533</td>
</tr>
<tr>
<td>SGT-600</td>
<td>24.5</td>
<td>50/60</td>
<td>33.6</td>
<td>~10,720</td>
<td>7,700</td>
<td>14.0</td>
<td>0.813</td>
<td>543</td>
</tr>
<tr>
<td>SGT-400 (15 MW)</td>
<td>14.3</td>
<td>50/60</td>
<td>35.6</td>
<td>~10,103</td>
<td>9,500</td>
<td>18.5</td>
<td>0.445</td>
<td>529</td>
</tr>
<tr>
<td>SGT-400 (13 MW)</td>
<td>12.9</td>
<td>50/60</td>
<td>34.8</td>
<td>~10,354</td>
<td>9,500</td>
<td>16.9</td>
<td>0.400</td>
<td>555</td>
</tr>
<tr>
<td>SGT-400 (11 MW)</td>
<td>10.4</td>
<td>50/60</td>
<td>35.4</td>
<td>~10,173</td>
<td>11,500</td>
<td>16.1</td>
<td>0.342</td>
<td>510</td>
</tr>
<tr>
<td>SGT-300</td>
<td>7.9</td>
<td>50/60</td>
<td>30.8</td>
<td>~11,704</td>
<td>14,045</td>
<td>13.7</td>
<td>0.302</td>
<td>543</td>
</tr>
<tr>
<td>SGT-100 (5.4 MW)</td>
<td>5.4</td>
<td>50/60</td>
<td>30.2</td>
<td>~11,913</td>
<td>17,384</td>
<td>15.6</td>
<td>0.210</td>
<td>549</td>
</tr>
<tr>
<td>SGT-100 (5.1 MW)</td>
<td>5.1</td>
<td>50/60</td>
<td>30.1</td>
<td>~11,945</td>
<td>17,384</td>
<td>14.0</td>
<td>0.195</td>
<td>544</td>
</tr>
<tr>
<td>SGT-50 (2 MW)</td>
<td>2.0</td>
<td>50/60</td>
<td>26.0</td>
<td>~15,148</td>
<td>25,500</td>
<td>7.0</td>
<td>0.944</td>
<td>600</td>
</tr>
<tr>
<td>SGT-A35 (GT30 38 MW)</td>
<td>36.8</td>
<td>50</td>
<td>38.9</td>
<td>~9,251</td>
<td>3,000</td>
<td>25.0</td>
<td>1.110</td>
<td>489</td>
</tr>
<tr>
<td>SGT-A35 (GT30 34 MW) DLE 50 Hz</td>
<td>32.2</td>
<td>50</td>
<td>37.4</td>
<td>~9,634</td>
<td>3,000</td>
<td>23.0</td>
<td>1.010</td>
<td>499</td>
</tr>
<tr>
<td>SGT-A35 (GT30 38 MW)</td>
<td>37.6</td>
<td>60</td>
<td>39.9</td>
<td>~9,028</td>
<td>3,300</td>
<td>25.0</td>
<td>0.109</td>
<td>487</td>
</tr>
<tr>
<td>SGT-A35 (GT30 34 MW)</td>
<td>33.8</td>
<td>60</td>
<td>38.7</td>
<td>~9,308</td>
<td>3,600</td>
<td>23.0</td>
<td>0.101</td>
<td>500</td>
</tr>
<tr>
<td>SGT-A35 (GT30 38 MW) DLE 60 Hz</td>
<td>33.0</td>
<td>60</td>
<td>38.5</td>
<td>~9,363</td>
<td>3,600</td>
<td>23.0</td>
<td>0.990</td>
<td>499</td>
</tr>
<tr>
<td>SGT-A35 (GT61) DLE</td>
<td>33.0</td>
<td>50/60</td>
<td>39.4</td>
<td>~9,140</td>
<td>4,850</td>
<td>23.0</td>
<td>0.980</td>
<td>487</td>
</tr>
<tr>
<td>SGT-A35 (GT62) DLE</td>
<td>31.3</td>
<td>50/60</td>
<td>38.3</td>
<td>~9,400</td>
<td>4,800</td>
<td>22.0</td>
<td>0.980</td>
<td>485</td>
</tr>
<tr>
<td>SGT-A05 (K87HE)</td>
<td>5.8</td>
<td>50/60</td>
<td>33.1</td>
<td>~10,889</td>
<td>14,600</td>
<td>14.4</td>
<td>2.145</td>
<td>522</td>
</tr>
<tr>
<td>SGT-A05 (K87S)</td>
<td>5.4</td>
<td>50/60</td>
<td>32.3</td>
<td>~11,146</td>
<td>14,600</td>
<td>14.2</td>
<td>2.135</td>
<td>495</td>
</tr>
<tr>
<td>SGT-A05 (K85S)</td>
<td>4.0</td>
<td>50/60</td>
<td>29.7</td>
<td>~12,137</td>
<td>14,200</td>
<td>10.3</td>
<td>1.545</td>
<td>560</td>
</tr>
</tbody>
</table>
Subject to changes and errors. The information given in this document only contains general descriptions and/or performance features which may not always specifically reflect those described, or which may undergo modification in the course of further development of the products. The requested performance features are binding only when they are expressly agreed upon in the concluded contract.

For more information, please contact our Siemens Energy Customer Support Center.
Phone: +49 180 524 70 00
Fax: +49 180 524 24 71
(Charges depending on provider)
E-mail: support@siemens-energy.com
https://www.siemens-energy.com/gasturbines
© Siemens Energy 2021